资源类型

期刊论文 417

会议视频 15

会议信息 1

年份

2024 1

2023 23

2022 34

2021 26

2020 21

2019 24

2018 23

2017 19

2016 19

2015 17

2014 14

2013 12

2012 33

2011 28

2010 49

2009 16

2008 15

2007 14

2006 7

2005 6

展开 ︾

关键词

天然气 11

能源 8

勘探开发 7

普光气田 7

页岩气 5

可持续发展 4

天然气水合物 4

温室气体 4

中国 3

采油工程 3

三相界面 2

中国近海 2

低碳 2

光声 2

关键技术 2

分布特征 2

南海 2

发展方向 2

发展趋势 2

展开 ︾

检索范围:

排序: 展示方式:

Numerical study of conduction and radiation heat losses from vacuum annulus in parabolic trough receivers

Dongqiang LEI, Yucong REN, Zhifeng WANG

《能源前沿(英文)》 2022年 第16卷 第6期   页码 1048-1059 doi: 10.1007/s11708-020-0670-7

摘要: Parabolic trough receiver is a key component to convert solar energy into thermal energy in the parabolic trough solar system. The heat loss of the receiver has an important influence on the thermal efficiency and the operating cost of the power station. In this paper, conduction and radiation heat losses are analyzed respectively to identify the heat loss mechanism of the receiver. A 2-D heat transfer model is established by using the direct simulation Monte Carlo method for rarefied gas flow and heat transfer within the annulus of the receiver to predict the conduction heat loss caused by residual gases. The numerical results conform to the experimental results, and show the temperature of the glass envelope and heat loss for various conditions in detail. The effects of annulus pressure, gas species, temperature of heat transfer fluid, and annulus size on the conduction and radiation heat losses are systematically analyzed. Besides, the main factors that cause heat loss are analyzed, providing a theoretical basis for guiding the improvement of receiver, as well as the operation and maintenance strategy to reduce heat loss.

关键词: parabolic trough receiver     vacuum annulus     rarefied gas     DSMC (direct simulation Monte Carlo)     heat loss    

CO, N, and CO/N mixed gas injection for enhanced shale gas recovery and CO geological storage

《能源前沿(英文)》 2023年 第17卷 第3期   页码 428-445 doi: 10.1007/s11708-023-0865-9

摘要: In this work, using fractured shale cores, isothermal adsorption experiments and core flooding tests were conducted to investigate the performance of injecting different gases to enhance shale gas recovery and CO2 geological storage efficiency under real reservoir conditions. The adsorption process of shale to different gases was in agreement with the extended-Langmuir model, and the adsorption capacity of CO2 was the largest, followed by CH4, and that of N2 was the smallest of the three pure gases. In addition, when the CO2 concentration in the mixed gas exceeded 50%, the adsorption capacity of the mixed gas was greater than that of CH4, and had a strong competitive adsorption effect. For the core flooding tests, pure gas injection showed that the breakthrough time of CO2 was longer than that of N2, and the CH4 recovery factor at the breakthrough time (RCH4) was also higher than that of N2. The RCH4 of CO2 gas injection was approximately 44.09%, while the RCH4 of N2 was only 31.63%. For CO2/N2 mixed gas injection, with the increase of CO2 concentration, the RCH4 increased, and the RCH4 for mixed gas CO2/N2 = 8:2 was close to that of pure CO2, about 40.24%. Moreover, the breakthrough time of N2 in mixed gas was not much different from that when pure N2 was injected, while the breakthrough time of CO2 was prolonged, which indicated that with the increase of N2 concentration in the mixed gas, the breakthrough time of CO2 could be extended. Furthermore, an abnormal surge of N2 concentration in the produced gas was observed after N2 breakthrough. In regards to CO2 storage efficiency (Sstorage-CO2), as the CO2 concentration increased, Sstorage-CO2 also increased. The Sstorage-CO2 of the pure CO2 gas injection was about 35.96%, while for mixed gas CO2/N2 = 8:2, Sstorage-CO2 was about 32.28%.

关键词: shale gas     gas injection     competitive adsorption     enhanced shale gas recovery     CO2 geological storage    

A novel methodology for forecasting gas supply reliability of natural gas pipeline systems

Feng CHEN, Changchun WU

《能源前沿(英文)》 2020年 第14卷 第2期   页码 213-223 doi: 10.1007/s11708-020-0672-5

摘要: In this paper, a novel systematic and integrated methodology to assess gas supply reliability is proposed based on the Monte Carlo method, statistical analysis, mathematical-probabilistic analysis, and hydraulic simulation. The method proposed has two stages. In the first stage, typical scenarios are determined. In the second stage, hydraulic simulation is conducted to calculate the flow rate in each typical scenario. The result of the gas pipeline system calculated is the average gas supply reliability in each typical scenario. To verify the feasibility, the method proposed is applied for a real natural gas pipelines network system. The comparison of the results calculated and the actual gas supply reliability based on the filed data in the evaluation period suggests the assessment results of the method proposed agree well with the filed data. Besides, the effect of different components on gas supply reliability is investigated, and the most critical component is identified. For example, the 48th unit is the most critical component for the SH terminal station, while the 119th typical scenario results in the most severe consequence which causes the loss of 175.61×10 m gas when the 119th scenario happens. This paper provides a set of scientific and reasonable gas supply reliability indexes which can evaluate the gas supply reliability from two dimensions of quantity and time.

关键词: natural gas pipeline system     gas supply reliability     evaluation index     Monte Carlo method     hydraulic simulation    

Life-cycle analysis of energy use and greenhouse gas emissions of gas-to-liquid fuel pathway from steelmill off-gas in China by the LanzaTech process

Xunmin OU, Xu ZHANG, Qian ZHANG, Xiliang ZHANG

《能源前沿(英文)》 2013年 第7卷 第3期   页码 263-270 doi: 10.1007/s11708-013-0263-9

摘要: The LanzaTech process can convert carbon monoxide-containing gases produced by industries, such as steel manufacturing, into valuable fuel products. The life-cycle analysis (LCA) of energy use and greenhouse gas emissions from the LanzaTech process has been developed for a Chinese setting using the original Tsinghua China Automotive LCA model along with a customized module developed principally for the process. The LCA results demonstrate that LanzaTech gas-to-liquid (GTL) processing in China’s steel manufacturing is favorable in terms of life-cycle fossil energy and can reduce greenhouse gas emissions by approximately 50% compared with the conventional petroleum gasoline. The LanzaTech process, therefore, shows advantages in both energy-savings and a reduction in greenhouse gas emissions when compared with most bio-ethanol production pathways in China.

关键词: life-cycle analysis (LCA)     gas-to-liquid (GTL)     LanzaTech process    

Latest progress in numerical simulations on multiphase flow and thermodynamics in production of natural gasfrom gas hydrate reservoir

Lin ZUO, Lixia SUN, Changfu YOU

《能源前沿(英文)》 2009年 第3卷 第2期   页码 152-159 doi: 10.1007/s11708-009-0017-x

摘要: Natural gas hydrates are promising potential alternative energy resources. Some studies on the multiphase flow and thermodynamics have been conducted to investigate the feasibility of gas production from hydrate dissociation. The methods for natural gas production are analyzed and several models describing the dissociation process are listed and compared. Two prevailing models, one for depressurization and the other for thermal stimulation, are discussed in detail. A comprehensive numerical method considering the multiphase flow and thermodynamics of gas production from various hydrate-bearing reservoirs is required to better understand the dissociation process of natural gas hydrate, which would be of great benefit to its future exploration and exploitation.

关键词: numerical simulation     natural gas hydrate     dissociation     thermodynamics     multiphase flow    

Key issues in development of offshore natural gas hydrate

Shouwei ZHOU, Qingping LI, Xin LV, Qiang FU, Junlong ZHU

《能源前沿(英文)》 2020年 第14卷 第3期   页码 433-442 doi: 10.1007/s11708-020-0684-1

摘要: As a new clean energy resource in the 21st century, natural gas hydrate is considered as one of the most promising strategic resources in the future. This paper, based on the research progress in exploitation of natural gas hydrate (NGH) in China and the world, systematically reviewed and discussed the key issues in development of natural gas hydrate. From an exploitation point of view, it is recommended that the concepts of diagenetic hydrate and non-diagenetic hydrate be introduced. The main factors to be considered are whether diagenesis, stability of rock skeleton structure, particle size and cementation mode, thus NGHs are divided into 6 levels and used unused exploitation methods according to different types. The study of the description and quantitative characterization of abundance in hydrate enrichment zone, and looking for gas hydrate dessert areas with commercial exploitation value should be enhanced. The concept of dynamic permeability and characterization of the permeability of NGH by time-varying equations should be established. The ‘Three-gas co-production’ (natural gas hydrate, shallow gas, and conventional gas) may be an effective way to achieve early commercial exploitation. Although great progress has been made in the exploitation of natural gas hydrate, there still exist enormous challenges in basic theory research, production methods, and equipment and operation modes. Only through hard and persistent exploration and innovation can natural gas hydrate be truly commercially developed on a large scale and contribute to sustainable energy supply.

关键词: natural gas hydrate exploitation offshore     diagenetic and non-diagenetic hydrate     solid-state fluidization method     dessert in enrichment area     three-gas combined production on gas hydrate abundance    

Active-reactive power scheduling of integrated electricity-gas network with multi-microgrids

《能源前沿(英文)》 2023年 第17卷 第2期   页码 251-265 doi: 10.1007/s11708-022-0857-1

摘要: Advances in natural gas-fired technologies have deepened the coupling between electricity and gas networks, promoting the development of the integrated electricity-gas network (IEGN) and strengthening the interaction between the active-reactive power flow in the power distribution network (PDN) and the natural gas flow in the gas distribution network (GDN). This paper proposes a day-ahead active-reactive power scheduling model for the IEGN with multi-microgrids (MMGs) to minimize the total operating cost. Through the tight coupling relationship between the subsystems of the IEGN, the potentialities of the IEGN with MMGs toward multi-energy cooperative interaction is optimized. Important component models are elaborated in the PDN, GDN, and coupled MMGs. Besides, motivated by the non-negligible impact of the reactive power, optimal inverter dispatch (OID) is considered to optimize the active and reactive power capabilities of the inverters of distributed generators. Further, a second-order cone (SOC) relaxation technology is utilized to transform the proposed active-reactive power scheduling model into a convex optimization problem that the commercial solver can directly solve. A test system consisting of an IEEE-33 test system and a 7-node natural gas network is adopted to verify the effectiveness of the proposed scheduling method. The results show that the proposed scheduling method can effectively reduce the power losses of the PDN in the IEGN by 9.86%, increase the flexibility of the joint operation of the subsystems of the IEGN, reduce the total operation costs by $32.20, and effectively enhance the operation economy of the IEGN.

关键词: combined cooling     heating     and power (CCHP)     integrated energy systems (IES)     natural gas     power distribution system     gas distribution system    

Bioenergy recovery from landfill gas: A case study in China

Wei WANG, Yuxiang LUO, Zhou DENG

《环境科学与工程前沿(英文)》 2009年 第3卷 第1期   页码 20-31 doi: 10.1007/s11783-009-0012-9

摘要: Landfill gas (LFG) utilization which means a synergy between environmental protection and bioenergy recovery was investigated in this study. Pressure swing adsorption technology was used in LFG purification, and laboratory experiment, pilot-scale test, and on-site demonstration were carried out in Shenzhen, China. In the laboratory experiment, A-type carbon molecular sieve was selected as the adsorbent by comparison of several other adsorbents. The optimal adsorption pressure and adsorption time were 0.25 MPa and 2 min, respectively, under which the product generation rate was 4.5 m /h and the methane concentration was above 90%. The process and optimization of the pilot-scale test were also reported in the paper. The product gas was of high quality compared with the National Standard of Compressed Natural Gas as Vehicle Fuel (GB18047-2000), when the air concentration in feed gas was under 10.96%. The demonstration project was composed of a collection system, production system, and utilization system. The drive performance, environmental protection performance, and economic feasibility of the product gas – as alternative fuel in passenger car, truck, and bulldozer – were tested, showing the feasibility technology for LFG utilization.

关键词: landfill gas (LFG)     compressed purified landfill gas (CPLG)     pressure swing adsorption (PSA)     alternative vehicle fuel     demonstration project    

The Fast Road of Shale Gas Development in China —Reflections on Building a Special Test Areas for NationalShale Gas Development

Da-wei Zhang

《工程管理前沿(英文)》 2015年 第2卷 第4期   页码 364-372 doi: 10.15302/J-FEM-2015062

摘要: China’s shale gas development has had a good start. It is necessary that the developers take advantage of the opportunity to make further efforts to promote shale gas development in China, in particular by rolling out a comprehensive plan on a national level. The author makes a proposal to establish a special shale gas test area in and adjacent to the Sichuan Basin as the most important way to promote the rapid development of shale gas in China. For this purpose, the author analyzes the current situation and problems of shale gas development in China, addresses the necessity and feasibility of establishing a special test area for shale gas development, and draws up the scope of this shale gas special test area of about 450 thousand square kilometers, covering Sichuan, Chongqing, Guizhou, and part of Yunnan, Hunan, Hubei provinces, and proposes the establishment of a shale gas test area in China. This consists of an overall plan, targets, and contents in 10 aspects, along with organization and implementation modes. The shale gas exploration and development in the shale gas zones is promoted vigorously by introducing special policies and innovating exploration, development and utilization model. While at the same time, the shale gas zones of continental facies in the Ordos Basin and marine-terrigenous facies in South Hubei Basin will be established. The experiences of the reform in the shale gas zones will be the good practice for the reform of petroleum organization system.

关键词: China     shale gas     exploration and development     reform     special shale gas test area (shale gas zone)    

Technology Innovation and Practice of Green Exploitation Projects of Oil and Gas in the Western SichuanGas Field

Hong-yong Liu,Yi-qi Chen,Yi Yang

《工程管理前沿(英文)》 2015年 第2卷 第1期   页码 71-75 doi: 10.15302/J-FEM-2015010

摘要: The green (environmentally friendly) project of mining oil and gas in the Western Sichuan area is based on the green low-carbon development strategy of the China Petrochemical Corporation, and it commits to form a complete set of technological developments in oil and gas extraction processes. The project focuses on technology innovation in three aspects: reuse of fracturing flow back fluid, reuse of drilling fluid, and configuration of fracturing fluid and drilling fluid by formation water. A series of technology innovations not only realize the green low-carbon strategy of the enterprise, but also play an important role in lowering cost and improving efficiency. In addition, the technology achieves remarkable social and economic benefits and inspires the ideas for industry technology innovation.

关键词: oil and gas exploitation     green low-carbon     technology innovation     strategic thinking    

GREENHOUSE GAS AND AMMONIA EMISSION MITIGATION PRIORITIES FOR UK POLICY TARGETS

《农业科学与工程前沿(英文)》 2023年 第10卷 第2期   页码 268-280 doi: 10.15302/J-FASE-2023495

摘要:

● An expert survey highlighted the most effective strategies for GHG and ammonia mitigation.

关键词: agriculture     ammonia     greenhouse gas     mitigation     net zero    

Simulation of combustion in spark-ignition engine fuelled with natural gas-hydrogen blends combined with

Jie WANG, Zuohua HUANG, Bing LIU, Xibin WANG

《能源前沿(英文)》 2009年 第3卷 第2期   页码 204-211 doi: 10.1007/s11708-009-0026-9

摘要: A numerical simulation of the influence of different hydrogen fractions, excess air ratios and EGR mass fractions in a spark-ignition engine was conducted. Good agreement between the calculated and measured in-cylinder pressure traces as well as pollutant formation trends was obtained. The simulation results show that NO concentration has an exponential relationship with temperature and increases sharply as hydrogen is added. EGR introduction strongly influences the gas temperature and NO concentration in the cylinder. The difference in temperature will lead to even greater difference in NO concentration. Thus, EGR can effectively decrease NO concentration. NO concentration reaches its peak value at the excess air ratio of 1.1 regardless of EGR mass fraction. The study shows that natural gas-hydrogen blend combined with EGR can realize a stable combustion and low NO emission in a spark-ignition engine.

关键词: natural gas     hydrogen     NO     exhaust gas recirculation     numerical simulation    

Research on the theory and application of adsorbed natural gas used in new energy vehicles: A review

Zhengwei NIE,Yuyi LIN,Xiaoyi JIN

《机械工程前沿(英文)》 2016年 第11卷 第3期   页码 258-274 doi: 10.1007/s11465-016-0381-2

摘要:

Natural gas, whose primary constituent is methane, has been considered a convincing alternative for the growth of the energy supply worldwide. Adsorbed natural gas (ANG), the most promising methane storage method, has been an active field of study in the past two decades. ANG constitutes a safe and low-cost way to store methane for natural gas vehicles at an acceptable energy density while working at substantially low pressures (3.5–4.0 MPa), allowing for conformable store tank. This work serves to review the state-of-the-art development reported in the scientific literature on adsorbents, adsorption theories, ANG conformable tanks, and related technologies on ANG vehicles. Patent literature has also been searched and discussed. The review aims at illustrating both achievements and problems of the ANG technologies-based vehicles, as well as forecasting the development trends and critical issues to be resolved of these technologies.

关键词: adsorbed natural gas (ANG)     adsorbent     adsorption theory     conformable tank     natural gas vehicles (NGVs)    

Structural modeling of a typical gas turbine system

Naresh YADAV, Irshad Ahmad KHAN, Sandeep GROVER

《能源前沿(英文)》 2012年 第6卷 第1期   页码 57-79 doi: 10.1007/s11708-011-0164-8

摘要: This paper presents an approach for the structural modeling and analysis of a typical gas turbine system. This approach has been applied to the systems and subsystems, which are integral parts of a typical gas turbine system. Since a gas turbine system performance is measured in terms of fluid flow energy transformations across its various assemblies and subassemblies, the performance of such subsystems affects the overall performance of the gas turbine system. An attempt has been made to correlate the associativity of such subsystems contributing to overall gas turbine system functional evaluation using graph theoretic approach. The characteristic equations at the system level as well as subsystem level have been developed on the basis of associativity of various factors affecting their performance. A permanent function has been proposed for the functional model of a gas turbine system, which further leads to selection, identification and optimal evaluation of gas turbine systems.

关键词: system modeling     gas turbine system evaluation     graph theoretic approach    

Discovery of Fuling Shale Gas Field and its prospects

Xusheng GUO, Yuping LI, Jinlei LI, Minggang FENG, Hua DUAN

《能源前沿(英文)》 2019年 第13卷 第2期   页码 354-366 doi: 10.1007/s11708-018-0581-z

摘要: A series of breakthroughs have been made in the understanding, evaluation, and exploration of shale gas from discovery, environmental protection to efficient exploration in the discovering of Fuling Gas Field. By revealing the positive correlation between organic carbon content and siliceous mineral content of shale deposited in deep shelf, dynamic preservation mechanism of “early retention and late deformation,” it is clarified that the shales deposited in deep shelf are the most favorable for shale gas generation, storage and fracturing. The preserving conditions determine the levels of shale gas accumulation, thus the evaluation concept of taking the quality of the shale as the base and the preserving conditions as key is proposed, the evaluation system for strategic selection of favorable zones is established for marine shale gas exploration in Southern China. Moreover, the “sweet point” seismic forecasting technologies for marine shale gas, the “six properties” logging technologies for evaluating shale gas layers, the technologies for quick and efficient drilling of horizontal well groups, and the fracturing technologies for composite fractures for horizontal wells are invented. The paper discussed the exploration prospect of shale gas in the shales of Wufeng-Longmaxi Formation in great depth in Sichuan Basin, shale gas exploration in the outer region of the south, and continental shale gas exploration in China.

关键词: shale gas     accumulation laws     exploration technologies     Longmaxi Formation     Fuling Shale Gas Field     Sichuan Basin    

标题 作者 时间 类型 操作

Numerical study of conduction and radiation heat losses from vacuum annulus in parabolic trough receivers

Dongqiang LEI, Yucong REN, Zhifeng WANG

期刊论文

CO, N, and CO/N mixed gas injection for enhanced shale gas recovery and CO geological storage

期刊论文

A novel methodology for forecasting gas supply reliability of natural gas pipeline systems

Feng CHEN, Changchun WU

期刊论文

Life-cycle analysis of energy use and greenhouse gas emissions of gas-to-liquid fuel pathway from steelmill off-gas in China by the LanzaTech process

Xunmin OU, Xu ZHANG, Qian ZHANG, Xiliang ZHANG

期刊论文

Latest progress in numerical simulations on multiphase flow and thermodynamics in production of natural gasfrom gas hydrate reservoir

Lin ZUO, Lixia SUN, Changfu YOU

期刊论文

Key issues in development of offshore natural gas hydrate

Shouwei ZHOU, Qingping LI, Xin LV, Qiang FU, Junlong ZHU

期刊论文

Active-reactive power scheduling of integrated electricity-gas network with multi-microgrids

期刊论文

Bioenergy recovery from landfill gas: A case study in China

Wei WANG, Yuxiang LUO, Zhou DENG

期刊论文

The Fast Road of Shale Gas Development in China —Reflections on Building a Special Test Areas for NationalShale Gas Development

Da-wei Zhang

期刊论文

Technology Innovation and Practice of Green Exploitation Projects of Oil and Gas in the Western SichuanGas Field

Hong-yong Liu,Yi-qi Chen,Yi Yang

期刊论文

GREENHOUSE GAS AND AMMONIA EMISSION MITIGATION PRIORITIES FOR UK POLICY TARGETS

期刊论文

Simulation of combustion in spark-ignition engine fuelled with natural gas-hydrogen blends combined with

Jie WANG, Zuohua HUANG, Bing LIU, Xibin WANG

期刊论文

Research on the theory and application of adsorbed natural gas used in new energy vehicles: A review

Zhengwei NIE,Yuyi LIN,Xiaoyi JIN

期刊论文

Structural modeling of a typical gas turbine system

Naresh YADAV, Irshad Ahmad KHAN, Sandeep GROVER

期刊论文

Discovery of Fuling Shale Gas Field and its prospects

Xusheng GUO, Yuping LI, Jinlei LI, Minggang FENG, Hua DUAN

期刊论文